Please do not redistribute slides without prior
permission.

Introduction to C++ Containers

-- Know Your Data Structures
with Mike Shah

Social: @MichaelShah
Web: mshah.io
17:15-16:15 Fri, November12, 2023 Courses: courses.mshah.io

3 YouTube

~60 minutes | Introductory Audience www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

The abstract that you read and enticed
Abstract you to join me is here!

The C++ Standard Library provides a common set of data structures (known as containers)
for inserting, updating, and removing data. Since the most recent standardization of C++ 23,
additional container and container adaptors have been added. In this talk, | will discuss how
C++ organizes these containers (sequence, associative, unordered associative, and
adaptors) targeted at a beginner who wants to understand how to navigate the STL. ALong
this journey trade-offs with each data structure will be discussed. Listeners to this talk will
leave with a cheat-sheet of data structures, so they know immediately which data structures
to use when starting a project. C++ examples will be shown for how to use each container,
the time complexity of the operations, the common implementation of each container. Some
other common 'gotchas' regarding thread-safety and iterator invalidation will be displayed in
these examples. Finally, time will be spent at the end of this talk highlighting the new C++ 23
flat container containers.

Code for the talk (or Google my name and find talk listed on website)

e Located here: https://qgithub.com/MikeShah/Talks/tree/main/2023/meetingcpp

— O MikeShah / Talks

¢> Code (-) Issues 9 Pullrequests (») Actions

; ¥ main ~ Talks/2023/meetingcpp/ &

e MikeShah Create readme.md

https://github.com/MikeShah/Talks/tree/main/2023/meetingcpp

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

| do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

o Usually graphics or games related -- e.g. Building 3D application
plugins

Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

Web
www.mshah.io

© YouTube

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

More STL than can fit in a talk....

e NOTE: | will not cover every container
today in depth, so some slides may go fast
(but you can pause, and the slides were
created to otherwise help you)

e |[f you don’t find what you're looking for:

o B Youlube “Mike Shah C++” or “Mike Shah STL”
o or
o www.courses.mshah.io

STL
std::array

Modern C ++

[

// To Comment

// or
Not Comment

Modern C++

STL std::array (Since C++11) | Modern Cpp Series

Mike Shah + 1.2K views + 7 months ago

STL std::span | Modern Cpp Series

Mike Shah « 2.3K views + 7 months ago

STL std::vector | Modern Cpp Series

Mike Shah « 1.2K views * 7 months ago

Commenting the 'why' in your C++ code | Modern Cpp Series

Mike Shah « 653 views * 7 months ago

STL std::list | Modern Cpp Series

Mike Shah « 1.3K views + 7 months ago

STL std::forward_list | Modern Cpp Series

Mike Shah « 887 views + 7 months ago

STL std::deque | Modern Cpp Series

Mike Shah « 1K views + 7 months ago

STL std::set | Modern Cpp Series

Mike Shah + 1.1K views * 7 months ago

http://www.courses.mshah.io

Data

All we have Is data

e At the end of the day--computers are
machines that help us transform
data as quickly and precisely as
possible

o Data, - operation - Data_,

e The machine to the right is a
“Turning machine’ which interprets
one symbol at a time and applies

some operation to the data.
o We have some higher level abstractions
in C++ however to help us manage and
organize the data.

An example of a Turning Machine

https://en.wikipedia.org/wiki/Turing_machine

https://en.wikipedia.org/wiki/Turing_machine

Fundamental Data Structures

Data Structure Definition

e Similar to our use of a shelf, bookcase, drawer, etc. to organize everyday
objects we organizing data in computers with data structures

In computer science, a data structure is a data organization,
management, and storage format that is usually chosen for
efficient access to data.l'l2ll3] More precisely, a data structure is
a collection of data values, the relationships among them, and
the functions or operations that can be applied to the data,* i.e.,

it is an algebraic structure about data.

https://en.wikipedia.org/wiki/Data_structure

10

https://en.wikipedia.org/wiki/Data_structure

Fundamental Data Structure: Built-in Array (1/2)

e In C++ we have built-in arrays which are

contiguous chunks of memory.
o Arrays are a homogeneous data structure where all
of the elements are of the same data type.

i.e. If you declare ‘int array[9] you have
9 equally sized integers of type ‘int’

Note: With arrays, we need to be careful not
to access something out of bounds (i.e. index
0 to 8 is my range)

'Inx Orroy [‘ﬂ

7]« [r e Lo o v [[,

EEr AT SRy JRAL Tuar Io0T Sue S (A,

Memory

B

We can allocate an array statically
(fixed-size)
o This array cannot change sizes -- the allocated

memory is ‘static’ or and the size of the array is
unchangeable after compiling our code. fixed_size_raw_array[0] =

We can allocate an array dynamically at Fixed_size_raw_array[1]

rLJTI-tIrT1EB. fixed_size_raw_array[&]

o We acquire a chunk of memory dynamically with
‘new’ in C++, and we hold the start of that chunk of
memory with a pointer of the same type.

o Through careful management, we can effectively
shrink or expand the size of a dynamic array by
reallocating a new chunk of memory

main(){

int fixed_size_raw_array[9];

* dynamic_allocation =

dynamic_allocation[1

[1 dynamic_allocation;

Fundamental Data Structure: Linked (1/2)

e Another fundamental data structure is a

linked’ data structure
o Linked data structures are formed of
individual pieces of data and associated by
‘chaining’ them together
o In C++ pointers (which store memory
addresses) are the primary mechanism to link
data together.

lis

Teos Goghs

=

e Usually we wrap together a ‘struct’

with one member variable as a BRLACATIN |), | node
‘ . ’ . de* ; - :
pointer’ alongside the data to g T T it Dala,
. . ¥ :
implement a data linked structure int main(){ Node” nect,
e Typically these type of data i ¢
structures are easy to expand, s
. 2.dat
because we can add a new link n1 i
n1.next
(often called a ‘node’) to them. n2.next
o However, this again has to be ;
node* iter = &n1;
managed. (iter!=){

std::cout << iter->data << std

iter=iter->next;

}

Data Structure Building Blocks

e So our building blocks for data structures are
o 1.) Built-in Arrays
o 2.) Linked Nodes (using pointers)

e Note: Also consider the possibilities that we can
also create intricate data structures such as linking
together arrays from these simple primitives.

.MA Orroyy [‘ﬂ

Memory

(|

RN Witk KRRk SRl Sy SR

lis

iffi Gnghs

5

e - no)c* ne+r;

eSS

2
d\h l’_\&r\-
S‘\r-f-\' orrey _nsde { T ojoel®
nt 3«\-.\',‘11',
0000

Big-O Complexity Chart

Data Structure trade-offs (1/2)

Operations

e The abstractions we use to create a data
structure create result trade-offs in terms

of space (storage) and time (run-time): —Gomans
o Access time Common Data Structure Operations
] |e to retrieve data Data Structure Time Complexity Space Complexity
Average Worst Worst
o
SearCh . Access Search Insertion Deletion Access Search Insertion Deletion
m query existence of data o B o o o BB B B 6 o]
o Insertion Stack e @ B H @ [~ o | ow)
: : Queue [fem)] lem) o] om] o(n) [ea] @) [om]
] add_ more da_tg, at the beginning, end, or sngviikedlt 5o o] B BB b2 b0 BN EE o
arbitrary position Doubly-linkedList [sw] [ow] (@ EE [(o 65 25§ o)
o Deletion Skip List [e@ogm))] [e(tog)] (e togm)](etog ()] (o] o) [om)
. . . Hash Table /A @) @) fe@)] N/A om| [om [om)] om]
u Remove data (beglnnlng’ end’ or arbltrary Binary Search Tree [6(Zog(m) | [(Zog (m))] [6(Zog (m)) | [6(Zog (m)) | @ @ o(n) o(m) @\
pOSItIOI‘l) Cartesian Tree w/a| [eegmn][e@egmn][e@ogmn] w/a @] [om] [om] o]
H . B-Tree [etog(m)] [e(zog(m))] [e(tog(n))][e(2og(m)) [0 (2og(m)) [0 2og (m))][0 (og (m)) | [0 (1og (n)) | [om]
® There may aISO be trade-OﬁS regardlng' Red-Black Tree [e(log(n))][elog(n))][e(logn))][e(log(n))][o(tog(n))][0(Tog(n))][o(Tog (m))][0 (Tog (m))] om|
@) A"OCﬁtIOﬂ Splay Tree N/A [9(10';(11))He(loq(n))He(log(n))‘ N/A IO{log(n))”O(log(n))Ho(log(n)il \o(n)'\
H H AVL Tree [eogm))][e(Logm))][e(logm))][e(log(n))][o(teg (n))][o(Tog (m))][o(Tog (m))][0 (Tog (m))] [om]
u Fixed or resizeable KD Tree [edssmn] [eegmn] [Bioamn] fdesmn] [om] [om] [om] [om)] [om)

o Ease of use/implementation

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Data Structure trade-offs (2/2)

The abstractions we ug
structure create result {

of space (storage) and
o Access time
m ie. toretrieved
o Search
m query existence
o Insertion
m add more data,
arbitrary positio
o Deletion

Good News!

The C++ Standard Library comes
powered with several data structures

| will provide an overview of what is
available and how to choose a data
structure

m Remove data (
position)

E€gmnIng, ena, or aroirary

There may also be trade-offs regarding:

o Allocation
m Fixed or resizea

ble

o Ease of use/implementation

https://www.bigocheatsheet.com/

17

https://www.bigocheatsheet.com/

Standard Template Library (STL)

Some History

Standard Template Library (STL) - History

e In 1993 Alexander Stepanov presented a generics library to the C++ standard

committee
o What this included was many data structures and container structures.
o Prior to this time there was no ‘standard template library’ for C++
m (Folks who have done Java or Python are use to using ‘import’ to get libraries)
o Folks rolled their own library of data structures (and many still do this in specific domains)

e The Standard Template Library (STL) provides C++ programmers with a set

of standard: algorithms, containers, functions, and iterators.
o This means regardless of the compiler, we can (for the most part) rely on having a common
set of tools to work with and implement C++ in.
o Most vendors: Clang++, g++, MSVC, etc. have good implementations of the STL available

19

https://en.wikipedia.org/wiki/Alexander_Stepanov

The C++ Standard Library

e The Standard library offers us many

libraries
o The ‘data structures’ portion we are
going to focus on in this talk are listed
under the ‘Containers Library’

e Note:

o Things like ‘pair’, ‘tuple’, ‘string’, ‘bitset’,
‘valarray’ are data structures available
as well but not discussed today

m They are special use cases of the
generic containers we will talk
about today.

C++ reference

C++98, C++03, C++11, C++14, C++17, C++20, C++23 | Compiler support C++11, C++14, C++17, C++20, C++23

Freestanding implementations
Language

Basic concepts

Keywords

Preprocessor

Expressions

Declaration

Initialization

Functions

Statements

Classes

Overloading

Templates

Exceptions
Headers
Named requirements
Feature test macros (c++20)
Language support library

Type support — traits (C++11)

Program utilities

Coroutine support (C++20)

Three-way comparison (C++20)

numeric_limits — type_info

initializer list (C++11)
Concepts library (c++20)

Technical specifications

Diagnostics library
General u

es library
Smart pointers and allocators
unique ptr (C++11)
shared ptr (C++11)
Date and time
Function objects — hash (C++11)
String conversions (C++17)
Utility functions

pair — tuple (C++11)
optional (C++17) — any (C++17)
variant (C++17) — format (C++20)

Strings library

basic string
basic_string view (C++17)
Null-terminated strings:
byte — multibyte — wide

Containers library

array (C++11) — vector — deque
map — unordered_map (C++11)

set — unordered_set (C++11)
priority queue — span (C++20)
Other containers:

sequence — associative
unordered associative — adaptors

Standard library extensions (library fundamentals TS)

resource adaptor — invocation type

Standard library extensions v2 (library fundamentals TS v2)
propagate const — ostream_joiner — randint

observer ptr — detection idiom

Standard library extensions v3 (library fundamentals TS v3)
scope_exit — scope_fail — scope_success — unique_resource

Concurrency library extensions (concurrency 7s) — Transactional Memory (Tv Ts)

Concepts (concepts 7S) — Ranges (ranges 7S) — Reflection (reflection TS)

Iterators library
Ranges library (c++20)
Algorithms library
Numerics library
Common math functions
Mathematical special functions (C++17)
Numeric algorithms
Pseudo-random number generation
Floating-point environment (C++11)
complex — valarray
Localizations library
Input/output library
Stream-based 1/0
Synchronized output (C++20)
1/0 manipulators
Filesystem library (c++17)
Regular expressions library (c++11)
basic_regex — algorithms
Atomic operations library (c++11)
atomic — atomic_flag
atomic_ref (C++20)
Thread support library (c++11)
thread — mutex
condition variable

https://en.cppreference.com/w/

20

https://en.cppreference.com/w/

C++ reference

C++11, C++14, C++17, C++20, C++23, C++26 | Compiler support C++11, C++14, C++17, C++20, C++23, C++26

Freestanding implementations

ASCII chart
Language

Basic concepts

Keywords

Preprocessor

Expressions

Declarations

Initialization

Functions

Statements

Classes

Overloading

Templates

Exceptions
Standard library (headers)
Named requirements
Feature test macros (C++20)

Language support library
source_location (C++20)
Type support
Program utilities
Coroutine support (C++20)
Three-way comparison (C++20)
numeric_limits — type info
initializer list (c++11)

Concepts library (C++20)

Diagnostics library
exception — System error
basic stacktrace (c++23)

Memory management library

unique ptr (c++11)
shared ptr (c++11)
Low level management

Metaprogramming library (C++11)
Type traits — ratio
integer sequence (C++14)
General utilities library
Function objects — hash (c++11)
Swap — Type operations (C++11)
Integer comparison (C++20)
pair — tuple (c++11)
optional (c++17)
expected (c++23)
variant (c++17) — any (C++17)
String conversions (C++17)
Formatting (c++20)
bitset — Bit manipulation (c++20)
Strings library
basic string — char traits
basic string view (C++17)
Null-terminated strings:
byte — multibyte — wide
Containers library
array (C++11)
vector — deque
list — forward list (c++11)
set — multiset
map — multimap
unordered map (C++11)
unordered multimap (C++11)
unordered_set (c++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat _multimap (c++23)
span (C++20) — mdspan (C++23)

Iterators library
Ranges library (C++20)

Algorithms library
Execution policies (c++17)
Constrained algorithms (c++20)
Numerics library
Common math functions
Mathematical special functions (c++17)
Mathematical constants (c++20)
Numeric algorithms
Pseudo-random number generation
Floating-point environment (c++11)
complex — valarray
Date and time library
Calendar (c++20) — Time zone (C++20)
Localizations library
locale — Character classification
Input/output library
Print functions (c++23)
Stream-based 1/O — /O manipulators
basic _istream — basic _ostream
Synchronized output (c++20)
Filesystem library (C++17)
path
Regular expressions library (C++11)
basic regex — algorithms
Concurrency support library (C++11)
thread — jthread (c++20)
atomic — atomic_flag
atomic_ref (c++20)
memory order — condition variable
Mutual exclusion — Semaphores (C++20)
future — promise — async
latch (c++20) — barrier (c++20)

21

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

4 main ‘categories’ of
containers

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

Sequence containers
Sequence containers implement data structures which can be accessed sequentially.

static contiguous array

array (C++11) (class template)

- 5 set
toi dynamic contiguous array
vec (class template)
= ma
deque double-ended queue P
(class template)
¥ singly-linked list multiset
forward_list (C++11) (class template)
: doubly-linked list .
list (class template) MU1t1map

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).

collection of unique keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys, keys are unique
(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

Container adaptors
Container adaptors provide a different interface for sequential containers.
adapts a container to provide stack (LIFO data structure)
(class template)
adapts a container to provide queue (FIFO data structure)
(class template)
adapts a container to provide priority queue
(class template)
adapts a container to provide a collection of unique keys, sorted by keys
(class template)
adapts two containers to provide a collection of key-value pairs, sorted by unique keys
(class template)
adapts a container to provide a collection of keys, sorted by keys
(class template)
adapts two containers to provide a collection of key-value pairs, sorted by keys
(class template)

stack
queue
priority_queue
flat_set (c++23)

flat_map (C++23)

flat_multiset (c++23)

flat_multimap (C++23)

Unordered associative containers (since c++11)

Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (0O(1)
average, O(n) worst-case complexity).

collection of unique keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys, keys are unique

(class template)

collection of keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys
(class template)

unordered_set (C++11)
unordered_map (C++11)
unordered_multiset (C++11)

unordered_multimap (C++11)

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

24

C++ Containers

Containers library
array (C++11)
vector — deque
list — forward list (c++11)
set — multiset
map — multimap
unordered map (C++11)
unordered multimap (C++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat multiset (c++23)
flat map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

25

Motivation: Standard Template Library (STL) Containers

e Some thoughts on motivating use of
the STL Containers:

o First: These containers are ‘generic’ --
such that they can be used with any data

truct UDT{};

int main(){

type. std::vector<int> v1;

std::vector<UDT> v2;

std::vector v3 = {1L,

26

Motivation: Standard Template Library (STL) Containers

Observe, in many cases | can also simply change
the container as well -- as the interfaces are often
identical!

Simply swap container and see if it gives you the
desired performance/behavior you need!

temr re<cl > te ate<cl T>
t UDT{}; ruct UDT{};

nt main(){ int main(){

MyType<int> v1; MyType<int> v1;
MyType<UDT> v2; MyType<UDT> v2;

27

Motivation: Standard Template Library (STL) Containers

(@)

Second: The Containers are well tested,
and used by many developers.

Go gle Is the C++ STL well tested X & & Q

Reddit Images Videos Shopping News Maps Books Flights Finance

Since STL algorithms are widely used and well-tested, they're less likely

to contain bugs.

Note: | do not have a statistic to prove this-- but
keep in mind the STL is the result of decades
and millions of C++ programmers writing code,
multiple compiler vendors, and top library writers
making and testing contributions..

28

Motivation: Standard Template Library (STL) Containers

Containers %: Iterator(s) :’% Algorithms

t Generate(){
int i=0;

++];

t main(){

std::vector<int> vi;

o Third (and final point): STL Containers
work well with rest of the standard library

m We have 100+ algorithms in the St ectorRints. pesuls:
std::copy_if(v1.begin(),v1.end(),std::back_inserter(results),

STL available to use with (Gt 0L
containers 2

std::generate_n(std::back_inserter(v1), 5, Generate);

(auto elem: results){
std::cout << elem << std::endl;

i

29

Sequence containers
Sequence containers implement data structures which can be accessed sequentially.

static contiguous array
(class template)

dynamic contiguous array
(class template)
double-ended queue

(class template)

singly-linked list

(class template)

doubly-linked list

(class template)

array (C++11)

vector

deque
forward_list(c++11)

list

Sequence Containers

30

static contiguous array
(class template)

dynamic contiguous arra
vector y 9 y

Sequence Containers (class template)

double-ended queue
deque
(class template)

array (C++11)

singly-linked list

forward list (c++11)
= (class template)

e Containers that can be

list doubly-linked list
accessed sequentially S —
o Each container has a std::array<T,n> 8 | 6 5| 3
linear (i.e. line-like) g 1z [3 4
arrangement/shape std: vector<Ts v 112 99| 1
m i.e. Can move from g 7 2
one element to the st :dequects q 17 39 25 | 96
next 0 1 0 . 5
® Observe some sequence ; |
containers implemented with std::1ist<T> 1 7 2 6 end
‘arrays’ and some are ‘linked’ | t
data SSLITES: std::forward_list<T> fl 7 2 6 end

31

std: :array (1/3)

std::array<T, n> 8

std::adlray

Defined in header <array>

template<
class T,
std::size t N
> struct array;

(since C++11)

Quick Snapshot

Element access
at (c++11)
operator[] (c++11)
front (c++11)
back (c++11)

data(c++11)

Capacity

empty (C++11)
size(c++11)

max_size (C++11)
Operations
fill(c++11)

swap (C++11)

access specified element with bounds checking
(public member function)

access specified element

(public member function)

access the first element

(public member function)

access the last element

(public member function)

direct access to the underlying array
(public member function)

checks whether the container is empty
(public member function)

returns the number of elements
(public member function)

returns the maximum possible number of elements

(public member function)

fill the container with specified value

(public member function)

swaps the contents
(public member function)

32

std::array<T,n> 8 6 7 5 3
std: :array (2/3) 9

N
w
N

e |In C++ 11 we got a new ‘array’ in the STL
o The std: :array container is functionally exactly
the same as a regular raw array.
o ltis a stack-allocated contiguous array
m Size is fixed at compile-time

e We ‘prefer’ to use std::array versus raw

array (See to_array for conversion)
o Can perform bounds checking (e.g. .at()

main (argc, * argv([]){

std::array< , > myArray;

member function) myArray[0] =
m Several useful member functions available Lol sk
e (See example on right)
o Does not decay to a pointer in a function (i.e. it's reay oot

very clear what data we are passing)

myArray.back();
myArray.size();
myArray.max_size()f

https://en.cppreference.com/w/cpp/container/array/to_array

std::array<T, n>

std: :array (3/3)

Behavior/Performance characteristics

e Allocation:
o Static and fixed at compile-time
e Access:
o Random access with an offset into the array
e Search:
o O(n)if unsorted (i.e. linear search)
o Of(log,n) if sorted (i.e. binary search)
e Notes:

o std::array always knows its length
o Nicer interface (similar to std::vector) versus raw arrays.
o Prefer curly brace initialization

m std::array<int,5> a;

m std::array<int, 5> a{};

m std::array<int, 5> a{1,2};

main (argc, * argv([]){

std::array< , > myArray;

myArray['] = ;

myArray.at(') =

myArray.front();
myArray.back();
myArray.size();
myArray.max_size()f

std: :vector

std: :vector<T>

1/14

std::vector

Defined in header <vector>

template<
class T,

class Allocator = std::allocator<T>

> class vector;

Quick Snapshot

Element access
at
operator[]
front
back

data
Capacity
empty
size
max_size
reserve
capacity

shrink_to_fit (pr%)
Modifiers
clear

insert

insert_range (c++23)

emplace (C++11)

erase

access specified element with bounds checking
(public member function)

access specified element

(public member function)

access the first element

(public member function)

access the last element

(public member function)

direct access to the underlying array

(public member function)

checks whether the container is empty
(public member function)

returns the number of elements
(public member function)

returns the maximum possible number of elements
(public member function)

reserves storage
(public member function)

returns the number of elements that can be held in currently allocated stora
(public member function)

reduces memory usage by freeing unused memory
(public member function)

clears the contents

(public member function)

inserts elements

(public member function)

inserts a range of elements

(public member function)

constructs element in-place

(public member function) 35
erases elements

(public member function)

std::vector<T> Vv 1 2 | 99 1

std: :vector (2/14)

e Astd::vectorin C++isnotto be
confused with a mathematical vector
from linear algebra

e Astd::vector is aresizable array (i.e.
a dynamic array)

main(argc, *argvl[l){

std::vector<int> myVector;

o We can push (expand) in as many elements as myVector.push back(');
myVector.push back(”);
we want to the vector myVector.push back(");

myVector.at(”);

o And we can remove (shrink) existing elements

from a vector when no longer needed. iietas nop Backt;

(i=0; i < myVector.size(); i++){

std::cout << myVector[i] << std::endl;

}

https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector

std: :vector (3/14)

std: :vector<T>

e It's worth noting that a vector is ‘heap

allocated’
o Observe the visualization to the right to best
understand that a vector keeps track of the
‘size’ and ‘capacity’ of the allocated memory
m (next slide)

ptr

size=4

capacity=4

99

37

std: :vector (4/14)

std: :vector<T>

e It's worth noting that a vector is ‘heap

allocated’
o Observe the visualization to the right to best
understand that a vector keeps track of the
‘size’ and ‘capacity’ of the allocated memory

e \When we ‘push_back(5) another

element will be added.
o Sometimes this forces a reallocation.
o It's typical that a vector’s capacity may
increase by some factor (e.g. 1.6, 2.0, etc.)

ptr| size=5 |capacity=8|_
1 2 | 99 2?21?77 | ?7?
1 2 4 5 6 7

38

std: :vector (5/14)

std: :vector<T>

e shrink to fit()

o Arequest to try to remove any unused
capacity in case our vector starts growing too
large (think millions of large objects stored)

m (Behavior implementation defined)

ptr| size=5 |capacity=5
1 2 | 99)
1 2 4

39

https://en.cppreference.com/w/cpp/container/vector/shrink_to_fit

std: :vector (6/14)

std: :vector<T>

size=5

e \What if | want to insert in the beginning

or middle of a contiguous data structure?

o 1insert() does allow us to insert at an
arbitrary position

e Consider what must happen, and what

the performance must be.
o (next slide for answer)

capacity=5

99

ptr
1 2
% 1

Insert here 427

std: :vector (7/14)

std: :vector<T>

e \What if | want to insert in the beginning

or middle of a contiguous data structure?

o 1insert() does allow us to insert at an
arbitrary position

e Consider what must happen, and what

the performance must be.

o First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)

ptr| size=5 |capacity=5
1 2 | 99)
1 2 4
2?21?22 | 2?2 | 2?7 | 2?7 | ?7?
0 1 2 3 4 4

41

std: :vector (8/14)

std: :vector<T>

e \What if | want to insert in the beginning

or middle of a contiguous data structure?
o insert() does allow us to insert at an
arbitrary position

e Consider what must happen, and what

the performance must be.
o First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)
o Then copy elements (could be expensive if
copy is expensive!)

ptr| size=5 |capacity=5
1 2 | 99)
1 2 4
2?71 2 |99 | 1 3}
1 2 3 4 i

std: :vector (9/14)

std: :vector<T>

e \What if | want to insert in the beginning

or middle of a contiguous data structure?
o insert() does allow us to insert at an
arbitrary position

e Consider what must happen, and what

the performance must be.
o First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)
o Then copy elements (could be expensive if
copy is expensive!)
o Insert our element

ptr| size=5 |capacity=5
1 2 | 99)

1 2 4

42 | 2 [99| 1 3}

1 2 3 4 i

std: :vector (10/14)

std: :vector<T>

e \What if | want to insert in the beginning

or middle of a contiguous data structure?

o 1insert() does allow us to insert at an
arbitrary position

e Consider what must happen, and what

the performance must be.
o First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)
o Then copy elements (could be expensive if
copy is expensive!)
o Insert our element
o Update our pointer, and reclaim memory

ptr| size=6 |capacity=6
/
1T 142 | 2 | 99 | 1
1 2 3 4 5

std: :vector<T>

std: :vector (11/14)

ptr| size=6 |capacity=6

e So std::vector are more flexible than /
std: .array, 1 42 2 09 1
o We have to be careful if we perform insertion) 1 5 3 y) 5

(and removal) operations at anywhere other
than the end of the std: :vector however.

e Good news however -- all of the hard
work to reallocate is done for us, we just

need to use the vector interface

o It's useful however to see exactly how this stuff
works.

std: :vector (12/14)

std: :vector<T>

e Aside;

o There are some other useful tricks like using
".reserve(size_t n)’ to set the vector capacity
when you initially allocate it.

m This prevents too many ‘reallocations’ if
you are going to populate the vector with
push_back -- especially when first
initializing the data structure.

ptr

Size=6 |capacity=6

42 | 2 | 99 | 1
4

46

https://en.cppreference.com/w/cpp/container/vector/reserve

std::vector<T> Vv 1 2 | 99 1

std: :vector (13/14)

Behavior/Performance characteristics

e Allocation:

o Dynamic main(int argc, * argv[]){
° :
Access: std::vector<int> myVector;
o Random access with an offset into the array
. myVector.push back(');
i SearCh' myVector.push _back(”);
o O(n) if unsorted (i.e. linear search) MyVEEtop. push _back g
o O(log,n) if sorted (i.e. binary search) myvector.at();
PY NOteS: myVector.pop back();
o The default data structure for performance (20t 18 1 < MyVeetaF.sizel)s LisH
and flexibility |
. , std::cout << myVector[i] << std::endl;
m (i.e. Probably what you’ll use most }

frequently)

std::vector<T> Vv 1 2 | 99 1

std: :vector (14/14)

Behavior/Performance characteristics

e More Notes:
o Optimized for operations at end of the data main(int argc, * argvl1){
structure
o Some mitigation of copying can be done
with .reserve myVector.push back(!);
o Use shrink_to_fit() to minimize capacity m%‘jggigggﬂzﬂ E:EEE ;
o std::string effectively a vector that is
optimized for primitive types
m Though std::vector of std::byte may be
useful for a different use case.

std::vector<int> myVector;

myVector.at(”);

myVector.pop_back();

(i=0; i < myVector.size(); i++){

std::cout << myVector[i] << std::endl;

}

std: :deque<T>

std: :deque (1/5)

32 |. 25| 96 S

std:deque

Defined in header <deque=

template<

class T,

class Allocator = std::allocator<T>
> class deque;

Quick Snapshot

Element access
at
operator([]
front
back
Capacity
empty
size
max_size
shrink_to_fit (or¥)
Modifiers
clear
insert
insert_range (c++23)
emplace (C++11)
erase
push_back
emplace_back (c++11)
append_range (C++23)
pop_back

push_front

access specified element with bounds checking
(public member function)

access specified element

(public member function)

access the first element

(public member function)

access the last element

(public member function)

checks whether the container is empty

(public member function)

returns the number of elements

(public member function)

returns the maximum possible number of elements
(public member function)

reduces memory usage by freeing unused memory

(nithlic mamhar fiinctinnl

clears the contents

(public member function)

inserts elements

(public member function)

inserts a range of elements

(public member function)

constructs element in-place

(public member function)

erases elements

(public member function)

adds an element to the end

(public member function)

constructs an element in-place at the end
(public member function)

adds a range of elements to the end
(public member function)

removes the last element

(public member function) 49
inserts an element to the beginning

(public member function)

std: :deque<T> d

std: :deque (2/5)

32

25

06

e std::deque’s are ‘double-ended queues’
o A careful observation is that they are not typically
implemented as a contiguous data structure
m The top-right view is how we can think of them.
o Internally however -- there are links between fixed-size
arrays.
m (next slide)

50

std: :deque<T> d 32 | 25 1 96 5
1 0 T)
std: :deque (3/5)
e std::deque is a ‘double-ended queue’ 77
o A careful observation is that they are not typically ?7?
implemented as a contiguous data structure d
m The top-right view is how we can think of them. 7 d(e]
o Internally however -- there are links between fixed-size 32 | d[1]
arrays. ne>
m Some data structure (could be as simple as a % ——| 25 | d[2]
std::vector<chunks>) points us to the correct 3 96 | dl3]
fixed-size element.
So what does this mean? 5 d[4]

o (next slide)

??

51

std: :deque<T> d 7 32 3 25|96 5

std: :deque (4/5)

e std: :deque allows for insertion at
both the front() and back() of the data

structure in constant time!
o It's easy to allocate another fixed-size array.

std: :deque<int> d{1,2,3,

d.push_back();
d.push_front()

print = [](int a){ std::cout << a <<
std::for_each(d.cbegin(),d.cend(), print);

52

std: :deque<T>

std: :deque (5/5)

Behavior/Performance characteristics

e Allocation:
o Dynamically allocated (can resize)
e Access:
o Constant time and Random access with an
offset
e Search:
o O(n) if unsorted (i.e. linear search)
o Of(log,n) if sorted (i.e. binary search)
e Notes:

o Ability to resize() if needed
o Slightly extends upon std::vector interface
with ability to work with first elements.

std: :deque<int> d{1,2,3,

d.push_back();
d.push_front()

print = [](int a){ std::cout << a <<
std::for_each(d.cbegin(),d.cend(), print);

53

std::list<T> 1 7 L 2 | 6 end

std::1ist (1/4) | !

Element access

. i access the first element
Std s I I St front (public member function)
Kt access the last element
Defined in header <list> (public member function)
template< Capacity
class T ’ t checks whether the container is empty
class Allocator = std::allocator<T> -y (public member function)
> class list; siad returns the number of elements

(public member function)
returns the maximum possible number of elements

max_size {nublic membher fuinctian)
Modifiers

Ciear f;:LeraILsnEQneqbceor?:r?cr:i?n)

fasar inserts elements

(public member function)

inserts a range of elements

(public member function)

constructs element in-place

(public member function)

erases elements

(public member function)

adds an element to the end

(public member function)

constructs an element in-place at the end 54
(public member function)

adds a range of elements to the end

QUiCk SnapShOt insert_range (c++23)
emplace (C++11)

push_back

emplace_back (c++11)

m-mnand ranso s o3

std::1list<T> 1

std::list (2/4)

std: :1list is (usually) an implementation of

a doubly-linked list.

(@)

(@)

This means we have fast insertion and deletion
Note: We also do not have to worry so much about
iterator invalidation!

m (More on this later)
It's also worth noting there exist member functions
like ‘remove.if’ that have slightly different semantics
than std::remove_if

m Meaning, we do in fact ‘erase’ elements.

)id printList(const std::list<int>& list){
std::cout << ;

(« & e: list){

std::cout << e <<

}
std::cout << std::endl;

main(){
std::list<int> mylList;
myList.push_back(1);

myList.push_back(2);
myList.push_back(3);

myList.insert(begin(myList),5);
myList.insert(end(myList),0);

it = cbegin(mylList);
std::advance(it,myList.size()/2);
std::cout << << *jit << std::endl;
myList.sort();
myList.reverse();

myList.remove_if([1(int n) {

printList(myList);

https://en.cppreference.com/w/cpp/container/list/remove

std::list<T> 1 7 | 2 | 6 end

std::1list (3/4) | T

e (Aside) Just another example to
. id printList(const std::list<int>& list){
show how to splice (move i S reran
elements) from one list to the) '

std::cout << e <<
std::cout << std::endl;
other.

t main(){

std::list<int> mylList;
myList.push_back(1);
myList.push_back(2);

myList.push_back(3);

std::list<int> 1list3{15,25,35,45};
to list3_iter = list3.begin();
std::advance(list3_iter,2);

myList.splice(end(myList),
list3,
list3_iter,
end(list3));

printList(myList);
printList(list3);

std::1list<T> 1

std::list (4/4)

Behavior/Performance characteristics

Allocation:
o Dynamic, just keep adding nodes as needed

Access:

o O(n) -- need to traverse list

o O(1) for first (front) and last (back) element
Search:

o Linear -- need to traverse list

Notes:
o Take advantage of optimized member
functions (rather than generic <algorithm>’s)
for better performance/behavior

)id printList(const std::list<int>& list){
std::cout << ;

(« & e: list){

std::cout << e <<

}
std::cout << std::endl;

main(){
std::list<int> mylList;
myList.push_back(1);

myList.push_back(2);
myList.push_back(3);

myList.insert(begin(myList),5);
myList.insert(end(myList),0);

it = cbegin(mylList);
std::advance(it,myList.size()/2);
std::cout << << *jit << std::endl;
myList.sort();
myList.reverse();

myList.remove_if([1(int n) {

printList(myList);

std: :forward_list<T> fl - 7/

std::forward_1list (1/3)

end

Element access
stdf0rwa I"d_'lSt front (c++11)

Defined in header <forward list> Capacity

template<
class T, empty (C++11)
class Allocator = std::allocator<T>
> class forward list;

max_size (C++11)

Modifiers
clear (c++11)
insert_after(c++11)

emplace_after (c++11)

insert_range_after(c++23)
Quick Snapshot

erase_after(c++11)

push_front (c++11)

Operations
merge (C++11)

splice_after(c++11)

access the first element
(public member function)

checks whether the container is empty
(public member function)

returns the maximum possible number of element:

{nithlicr memher filnrtinn)

clears the contents

(public member function)

inserts elements after an element
(public member function)

constructs elements in-place after an element
(public member function)

inserts a range of elements after an element
(public member function)

erases an element after an element

(public member function)

inserts an element to the beginning

[ruihlicr mmambhar fiinctrian)

merges two sorted lists
(public member function)

moves elements from another forward list
(public member function)

PR T Ry ¥ 5 R AR PR SRR | L SRR R, - L R T

58

std: :forward_list<T> fl -/ 2 6 end

std::forward_list (2/3)

. push_back(std::forward_list<int>& list, val){
pos = begin(list);
® In Short’ thls IS Slngly Ilnked IISt t distance = std::distance(begin(list),
. . . . d(li ;
o Fast insertion at front of list with push_front e ST TRy

list.insert_after(pos,val);

(constant time)
o You'll have to come up with your own ¢ main(){
abstractions otherwise to add flexibility

e Similar to std::list, in some sense, but

way less power.
o Lightweight container added in C++11

std::forward_list<int> myList{1,2,3,

myList.push_front(0);

push_back(myList,5);
push_back(myList,6);
printList(myList);

std::forward_list<int> list2{-2,0,

myList.merge(list2);

printList(myList);
printlList¢list2) ;

https://en.cppreference.com/w/cpp/container/forward_list/push_front

std: :forward_list<T> fl -/ 2 6 end

std::forward_1list (3/3)

. L. push_back(std::forward_list<int>& list, val){
Behavior/Performance characteristics pos = begin(list); e
t distance = std::distance(begin(list),
end(list));
. . td::ad (,dist =L)s
e Allocation: Tist. nsert. attendean.alys
o Dynamic (inserting one node at a time at the end)
e Access: t main(){

o 0O(n), O(1) if you already have iterator handle

e Search:
o O(n) -- linear search

e Notes:
o std::forward_list does not know

std::forward_list<int> myList{1,2,3,

myList.push_front(0);

. push_back(myList,5);
|tS |ength push_back(myList,6);

printList(myList);

o Useful if you are primarily going to be
adding to a data structure and traversing
few times myList.merge(list2);

m Optimized for space storage versus printList(myList);
std::list sl

std::forward_list<int> list2{-2,0,

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys
(class template)

collection of key-value pairs, sorted by keys, keys are unique
(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

multiset

multimap

Container adaptors Unordered associative containers (since c++11)
Containeradaptorsiprovideraidifferentinterface for sequentiallcontainers: Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1)

" iﬂigg:pﬁfer}tainer to provide stack (LIFO data structure) average, O(n) worst-case complexity).
adapts a container to provide queue (FIFO data structure)

queue et unordered_set (C++11) collection of unique keys, hashed by keys

(class template)

PEiority qusne (aciasgtzr:p:;?;tamer to provide priority queue unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
T —— adapts a container to provide a collection of unique keys, sorted by keys - (class template)
= (class template) . collection of keys, hashed by keys
flat_map (C++23) (accliaasgt:r:g:t;ontainers to provide a collection of key-value pairs, sorted by unique keys unordered_multiset (C++11) (class template)
flat_multiset (C++23) adapts a container to provide a collection of keys, sorted by keys unordered_multimap (C++11) collection of key-value pairs, hashed by keys

(class template)

adapts two containers to provide a collection of key-value pairs, sorted by keys
(class template)

(class template)

flat_multimap (C++23)

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

Couple of ‘Gotcha’s’ with Containers (1/6)

e Containers ‘own’ the data
o When we use push_back that is making a copy to be placed in the container
o To avoid copies, can use emplace member functions to construct a new object
in place
m (Should be faster, but of course measure to confirm)
e \When removing data
o C++20
m std::eraseandstd::erase_if make things easier
o Otherwise can use the erase-remove idiom
m eg.
e v.erase(std::remove(v.begin(), v.end(), 5), v.end());
m Careful however if you are holding pointers or otherwise references to other objects, as memory
may not actually be freed.
e Generally where possible -- prefer the member functions of containers (especially if

you know know that is the member function you will be using)
o Member function may be more optimized
o May have a clearer interface

62

https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom

std: :vector<T>

ptr| size=5 |capacity=5

Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of

memaory.

o Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

o e.Jg.

m (next slide)

2 199 1 | 5

1 2 3 4

Some
iterator

Iterator invalidation
Read-only methods never invalidate iterators or references. Methods which modify the contents of a container may
invalidate iterators and/or references, as summarized in this table.
After insertion, are... After erasure, are...
Category Container iterators references iterators references Conditionally
valid? valid? valid? valid?
array N/A N/A
No N/A Insertion changed capacity
Before modified element(s)
vector Yes Yes (for insertion only if capacity
didn't change)
Sequence containers No No At or after modified element(s)
Yes Yes, except erased element(s) Modified first or last element
deque No — -
No No Modified middle only
list Yes Yes, except erased element(s)
forward_list Yes Yes, except erased element(s)
set
Associative containers m"]'mta;set Yes Yes, except erased element(s)
multimap
unordered_set . i
Unordered associative |unordered_multiset W Yes g LI G 50
containers unordered_maj Ye: Ye sicl N h
unordered_multimap S fes, except erased element(s) o rehas|

https://en.cppreference.com/w/cpp/container 63

https://en.cppreference.com/w/cpp/container

std: :vector<T>

ptr

Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of

memaory.

o Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

o e.Jg.

m push_back(7)
e Let's assume this forces a
new allocation

size=5

capacity=5

Some
iterator

99

2

Iterator invalidation

Read-only methods never invalidate iterators or references. Methods which modify the contents of a container may

invalidate iterators and/or references, as summarized in this table.

Category Container

array

vector
Sequence containers
deque

list
forward_list
set
Associative containers mulmta;set
multimap
o unordered_set
Unordered associative |unordered_multiset
containers unordered_maj
unordered_multimap

After insertion, are...

iterators references
valid? valid?
No
Yes
No
Yes
No
No
Yes
Yes
Yes
No
Yes
Yes

After erasure, are...
iterators references
valid? valid?

N/A

Conditionally

N/A Insertion changed capacity

Before modified element(s)
Yes (for inse[tiop only if capacity

didn't change)

No At or after modified element(s)

Yes, except erased element(s)

Yes, except erased element(s)
Yes, except erased element(s)

Yes, except erased element(s)

N/A Insertion caused rehash

Yes, except erased element(s) No rehash

Modified first or last element
No Modified middle only

https://en.cppreference.com/w/cpp/container

64

https://en.cppreference.com/w/cpp/container

std: :vector<T>

Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of

memaory.

o Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

o e.qg.

m push_back(7)
e Let's assume this forces a
new allocation
m Observe any iterators point to
the old data -- thus invalidated.

ptr| size=6

capacity=8

Some #;»
iterator
1

99

??

Iterator invalidation

Category Container

array

vector
Sequence containers
deque

list
forward_list
set
Associative containers mulmta;set
multimap
unordered_set
Unordered associative unordered_multiset

containers unordered_maj
unordered_multimap

After insertion, are...

iterators references
valid? valid?
No
Yes
No
Yes
No
No
Yes
Yes
Yes

Yes

After erasure, are...
iterators references
valid? valid?
N/A
N/A
Yes

No
Yes, except erased element(s)
No
Yes, except erased element(s)
Yes, except erased element(s)

Yes, except erased element(s)

N/A

Yes, except erased element(s)

Read-only methods never invalidate iterators or references. Methods which modify the contents of a container may
invalidate iterators and/or references, as summarized in this table.

Conditionally

Insertion changed capacity

Before modified element(s)
(for insertion only if capacity
didn't change)

At or after modified element(s)
Modified first or last element
Modified middle only

Insertion caused rehash

No rehash

https://en.cppreference.com/w/cpp/container

65

https://en.cppreference.com/w/cpp/container

When it comes to threading, that’'s a
whole other talk, but consider:

You Can:

m Safely read from a container with multiple
threads

m Safely write to different locations so long
as one thread accessing a unique
node/index

You cannot:

m Have simultaneous writes to the same
location however -- this require some
locking mechanism

e You should think about what
granularity makes sense for the
problem you are trying to solve and
how to appropriately compose the
result.

Thread safety

. All container functions can be called concurrently by different threads on different containers. More
generally, the C++ standard library functions do not read objects accessible by other threads unless
those objects are directly or indirectly accessible via the function arguments, including the this
pointer.

. All const member functions can be called concurrently by different threads on the same container. In

addition, the member functions begin(), end(), rbegin(), rend(), front(), back(), data(),

find(), lower_bound(), upper_bound(), equal_range(), at(), and, except in associative
containers, operator[], behave as const for the purposes of thread safety (that is, they can also be
called concurrently by different threads on the same container). More generally, the C++ standard
library functions do not modify objects unless those objects are accessible, directly or indirectly, via
the function's non-const arguments, including the this pointer.

Different elements in the same container can be modified concurrently by different threads, except

for the elements of std: :vector<bool> (for example, a vector of std: : future objects can be

receiving values from multiple threads).

Iterator operations (e.g. incrementing an iterator) read, but do not modify the underlying container,

and may be executed concurrently with operations on other iterators on the same container, with the

const member functions, or reads from the elements. Container operations that invalidate any
iterators modify the container and cannot be executed concurrently with any operations on existing
iterators even if those iterators are not invalidated.

. Elements of the same container can be modified concurrently with those member functions that are

not specified to access these elements. More generally, the C++ standard library functions do not

read objects indirectly accessible through their arguments (including other elements of a container)
except when required by its specification.

In any case, container operations (as well as algorithms, or any other C++ standard library

functions) may be parallelized internally as long as this does not change the user-visible results (e.qg.

std::transform may be parallelized, but not std: : for_each which is specified to visit each
element of a sequence in order).

-

N

@

>

v

o

(since C++11))

https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container

e A brief summary from cppreference about when to use each is below.
e Not sure?

(@)

(@)

Could simply start with std: :vector, then profile otherwise.
m Why this is the common advice is vector, array, or other contiguous data structures
provide good cache locality.
Consider how often you add/remove, and to what locations (front, back, or middle) to help
guide you.

Trade-offs / usage notes

std:
std::

std:
std:

std:

:vector Fast access but mostly inefficient insertions/deletions
:array Fast access but fixed number of elements
2118t

:forward list

:deque Efficient insertion/deletion at the beginning and at the end of the sequence

Efficient insertion/deletion in the middle of the sequence

https://en.cppreference.com/w/cpp/named_req/SequenceContainer

67

https://en.cppreference.com/w/cpp/named_req/SequenceContainer

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys
(class template)

collection of key-value pairs, sorted by keys, keys are unique
(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

multiset

multimap

Container adaptors Unordered associative containers (since c++11)
Containeradaptorsiprovideraidifferentinterface for sequentiallcontainers: Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1)

" iﬂigg:pﬁfer}tainer to provide stack (LIFO data structure) average, O(n) worst-case complexity).
adapts a container to provide queue (FIFO data structure)

queue et unordered_set (C++11) collection of unique keys, hashed by keys

(class template)

PEiority qusne (aciasgtzr:p:;?;tamer to provide priority queue unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
T —— adapts a container to provide a collection of unique keys, sorted by keys - (class template)
= (class template) . collection of keys, hashed by keys
flat_map (C++23) (accliaasgt:r:g:t;ontainers to provide a collection of key-value pairs, sorted by unique keys unordered_multiset (C++11) (class template)
flat_multiset (C++23) adapts a container to provide a collection of keys, sorted by keys unordered_multimap (C++11) collection of key-value pairs, hashed by keys

(class template)

adapts two containers to provide a collection of key-value pairs, sorted by keys
(class template)

(class template)

flat_multimap (C++23)

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

Container adaptors
Container adaptors provide a different interface for sequential containers.
adapts a container to provide stack (LIFO data structure)
(class template)

adapts a container to provide queue (FIFO data structure)
(class template)

adapts a container to provide priority queue
(class template)

adapts a container to provide a collection of unique keys, sorted by keys
(class template)

adapts two containers to provide a collection of key-value pairs, sorted by unique keys
(class template)

adapts a container to provide a collection of keys, sorted by keys
(class template)

adapts two containers to provide a collection of key-value pairs, sorted by keys
(class template)

Container Adaptors

Utilize different interface for containers we have already covered

stack

queue
priority_queue
flat_set (c++23)
flat_map (C++23)
flat_multiset (C++23)

flat_multimap (C++23)

69

Container Adaptors

e C(Container adaptors are not new
containers implemented in the

STL

o Rather they modify by either
restricting or enhancing the
interface to other containers

o When creating a container adaptor,
you get to choose the underlying
container (or otherwise accept the
default)

e |et’s take a look!

Container adaptors
Container adaptors provide a different interface for sequential containers.

stack

queue
priority_queue
flat_set (c++23)
flat_map (c++23)
flat_multiset (c++23)

flat_multimap (c++23)

adapts a container to provide stack (LIFO data structure)

(class template)

adapts a container to provide queue (FIFO data structure)

(class template)

adapts a container to provide priority queue

(class template)

adapts a container to provide a collection of unique keys, sorted by keys

(class template)

adapts two containers to provide a collection of key-value pairs, sorted by unique keys
(class template)

adapts a container to provide a collection of keys, sorted by keys

(class template)

adapts two containers to provide a collection of key-value pairs, sorted by keys
(class template)

70

std: :queue (1/3)

e Firstin First Out (FIFO) data structure

o Just like a grocery line, first person in, gets
served first, last person who lines up gets
served last

e With queues, we can only really
access the first element, and remove
the first element in order to get the
next element.

https://en.cppreference.com/w/cpp/container/queue

0 1 2 3 4 5

T
back

T
front

Element access
front
back
Capacity
empty
size
Modifiers
push
emplace (C++11)
pop

swap

access the first element
(public member function)
access the last element
(public member function)

checks whether the underlying container is empty
(public member function)

returns the number of elements

(public member function)

inserts element at the end

(public member function)

constructs element in-place at the end
(public member function)

removes the first element

(public member function)

swaps the contents

(public member function)

71

https://en.cppreference.com/w/cpp/container/queue

std::queue
Std : :queue (2/3) Defined in header <queue>
template<
class T,
e Astd::queue uses a std::deque by class Container = std::deque<T>
default > class queue;

o But a ‘list’ could also be used -- we need
something where we can access first and
last element

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the usual
semantics:

e back()
e front()
e push back()
e pop front()
The standard containers std: :deque and std::list satisfy these requirements.

std: :queue (3/3)

Behavior/Performance characteristics

Allocation:
o Dynamic (see underlying data structure)

Access:
o 0O(1) at the front

Search:

o N/A; (Could pop off everything in O(n))
Notes:

o Restricts underlying storage to

give you ‘FIFO’ behavior.

EM argc,

std: :queue<

myQueue.push (

myQueue. push(
myQueue. push (

std::cout <<

myQueue.pop() ;

std::cout <<

std::cout <<

* argv[]){

> myQueue;

)i
);
);

<< myQueue.front() << std::endl;

<< myQueue.front() << std::endl;

<< myQueue.size() << std::endl;

std: :stack (1/3)

e Lastin, first out (LIFO) data structure

o It's like stacking a bunch of dishes, whatever
is on top, is the first dish that you take off to
wash

e Almost identical to the std::queue
interface, but we have the ‘top()’
member function to read the top of the
stack.

https://en.cppreference.com/w/cpp/container/stack

Stack

/-

Push

Length : 1

IsEmpty : false

Element access
top

Capacity
empty
size

Modifiers
push
push_range (c++23)
emplace (C++11)
pop

swap (C++11)

accesses the top element
(public member function)

checks whether the underlying container is empty
(public member function)

returns the number of elements

(public member function)

inserts element at the top

(public member function)

inserts a range of elements at the top
(public member function)

constructs element in-place at the top
(public member function)

removes the top element

(public member function)

swaps the contents

(public member function)

74

https://en.cppreference.com/w/cpp/container/stack

std::stack

Defined in header <stack>
template<

e Uses again a std: :deque by default g{g:g 1C-<')ntainer . S e
o Can use a std::vector as well -- think about > class stack:
why this works in a performant way (versus
a queue where you probably do not want
std::vector).

std: :stack (2/3)

Container - The type of the underlying container to use to store the elements. The container must satisfy the

requirements of SequenceContainer. Additionally, it must provide the following functions with the usual
semantics:

e back()
e push back()
e pop back()

The standard containers std: :vector (including std: :vector<bool>), std: :deque and std::list

satisfy these requirements. By default, if no container class is specified for a particular stack class
instantiation, the standard container std: :deque is used.

std: :stack (3/3)

Behavior/Performance characteristics

Allocation:

(@)

Dynamic (see underlying data structure)

Access:

(@)

O(1) at the front

Search:

(@)

N/A; (Could pop off everything in O(n))

Notes:

(@)

Restricts underlying storage to
give you ‘FIFO’ behavior.

main(argc,

std: :stack<

myStack.push(
myStack.push(
myStack. push

std::cout <<

myStack.pop();

std::cout <<

std::cout <<

*argv[]){

> myStack;

)
)5
);

<< myStack.top() << std::endl;

<< myStack.tof§() << std::endl;

<< myStack.size() << std::endl;

std: :priority_queue (1/3)

e Similarto std: :queue interface, but

we have sorting
o Max element (by default) will always be the
top() of priority queue

https://www.fluentcpp.com/tag/priority-queue/

Element access
top

Capacity
empty
size

Modifiers
push
push_range (C++23)
emplace (C++11)
pop

swap (C++11)

accesses the top element
(public member function)

checks whether the underlying container is empty
(public member function)

returns the number of elements

(public member function)

inserts element and sorts the underlying container

(public member function)

inserts a range of elements and sorts the underlying container
(public member function)

constructs element in-place and sorts the underlying container
(public member function)

removes the top element

(public member function)

swaps the contents

(public member function)

77

https://www.fluentcpp.com/tag/priority-queue/

std::priority _queue

Defined in header <queue>

template<

Std : : p r iO r ity_q Ueue (2/3) 5{222 -(IZ-(’)ntainer = std::vector<T>,

class Compare = std::less<typename Container::value type>
> class priority queue;

e Uses againa std: :vector by default

e May require you to implement a custom comparator in order to maintain heap
property in the queue.

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer, and its iterators must satisfy the requirements of
LegacyRandomAccessIterator. Additionally, it must provide the following functions with the usual
semantics:

e front()
e push back()
e pop back().

The standard containers std: :vector (including std: :vector<bool>) and std: :deque satisfy these
requirements.

Compare - A Compare type providing a strict weak ordering.

Note that the Compare parameter is defined such that it returns true if its first argument comes
before its second argument in a weak ordering. But because the priority queue outputs largest
elements first, the elements that "come before" are actually output last. That is, the front of the queue
contains the "last" element according to the weak ordering imposed by Compare.

78

std: :priority_queue (3/3)

Behavior/Performance characteristics

e Allocation:

main(){
o Dynamic (see underlying data structure) std::priority_queue<int> priorityQueue;
. priorityQueue.push(32);
L ACCGSS priorityQueue.push(33);
priorityQueue.push(31);
o O(1) for top element
(!priorityQueue.empty()){
® SearCh t = priorityQueue.top();
. std::cout << << t << std::endl;
o Not really the right problem to solve priorityQueue.pop();
. . }
o (Could pop off everything in O(n))
e Notes:

o Need to to write a comparator for

o See on YouTube an example of a custom
non-primitive types so queue can be sorted.

comparator data structure with comparator
C++ STL std::priority queue (a container
adaptor) | Modern Cpp Series

79

https://www.youtube.com/watch?v=dxHx7EYehAQ&t=1s
https://www.youtube.com/watch?v=dxHx7EYehAQ&t=1s

std::flat_map (1/2)

e A new adaptor coming in C++23

Standard library header <f|at_map> (C++23)

This header is part of the containers library.

Includes

<compare> (C++20)
<initializer_list>(c++11)

Classes

flat_map (C++23)

flat_multimap (C++23)

Three-way comparison operator support
std::initializer_list class template

adapts two containers to provide a collection of key-value pairs,|

sorted by keys
Jace tamnlat,

tainers to provide a collection of key-value pairs,|

o Perhaps your compiler may have this available at the time of

watching this recording.

e Note that there are equivalent ‘flat’ data structures

for set, multimap, and multiset

e Upcoming in this talk | will show you two versions of

a ‘map’

o One that uses a tree data structure and one that uses a

hashmap

o The flatmap is a ‘third’ option which effectively flattens the
tree into a linear sequence (i.e. a sequence data structure

we have just discussed.

https://en.cppreference.com/w/cpp/header/flat map

80

https://en.cppreference.com/w/cpp/header/flat_map

std::flat_map (2/2)

Behavior/Performance characteristics

e Allocation:
o Dynamic as well, but inserting and deletion
are linear time operations

e Access:
o Fast to iterator through
e Search:

o Ordered data structure, so should be log,(n)
with good cache locality

e Notes:
o Coming soon!

81

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys
(class template)

collection of key-value pairs, sorted by keys, keys are unique
(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

set
map
multiset

multimap

Unordered associative containers (since c++11)

Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (0O(1)
average, O(n) worst-case complexity).

collection of unique keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys, keys are unique

(class template)

collection of keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys
(class template)

unordered_set (C++11)
unordered_map (C++11)
unordered_multiset (C++11)

unordered_multimap (C++11)

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys
(class template)

collection of key-value pairs, sorted by keys, keys are unique
(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

set
map
multiset

multimap

Unordered associative containers (since c++11)

Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (0O(1)
average, O(n) worst-case complexity).

collection of unique keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys, keys are unique

(class template)

collection of keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys
(class template)

unordered_set (C++11)
unordered_map (C++11)
unordered_multiset (C++11)

unordered_multimap (C++11)

Containers library
array (C++11)
vector — deque
list — forward_list (c++11)
set — multiset
map — multimap
unordered_map (C++11)
unordered multimap (c++11)
unordered set (C++11)
unordered multiset (c++11)
stack — queue — priority queue
flat_set (c++23)
flat_multiset (c++23)
flat_map (c++23)
flat_multimap (c++23)
span (C++20) — mdspan (C++23)

Associative and Unordered Associative Containers (1/5)

e |I'm going to talk about these two container type side-by-side

e As can be observed from the name, one container is ‘unordered’
o The implication of this means that we can choose one container over the other based on the

ordering.
Associative containers Unordered associative containers (since c++11)
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity). Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1

collection of unique keys, sorted by keys averags: Qawenst-cassicomplexity).

set : A
{class te-mplate) . . unordered_set (C++11) ::(?;ngcttely:n‘aci;unlque KR DS hecy ks
collection of key-value pairs, sorted by keys, keys are unique me ;]
map (class template) unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
= — (class template)
. collection of keys, sorted by keys
multiset . 5 i
(class template) unordered_multiset (C++11) cc\;llectmn} e R
. collection of key-value pairs, sorted by keys Sht il i) -
multimap (class template) unordered_multimap (C++11) collection of key-value pairs, hashed by keys

(class template)

84

e Associative containers typically have a self-balancing binary tree (rb-tree) to
represent them.

e Unordered associative containers have a hash table
o Observe a std: :set to the left and observe an std: :unordered_set on the right

7 hash(...) n

/ \ hash(..) ——1 9 — 5

/ 4 \ / 9 hash(..) ——.[>
hash(...)

Associative containers Unordered associative containers (since c++11)

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity). Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1
average, O(n) worst-case complexity).

collection of unique keys, sorted by keys

set ; ;
(class template) collection of unique keys, hashed by keys
unordered_set (C++11)
collection of key-value pairs, sorted by keys, keys are unique - {cass template) i i
map (class template) unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
5 = (class template)
. collection of keys, sorted by keys
multiset i g i
(class template) unordered multiset (C++11) collection of keys, hashed by keys
. collection of key-value pairs, sorted by keys - {classitermplate) .
multimap (class template) unordered_multimap (C++11) collection o key:valueipairs,shashied by keys

(class tembplate)

e Observe a std: :map to the left and observe an std: :unordered_map on
the right

o This time having a key and value pair. The key is what is sorted this time, and the value is the
information alongside in a node

key value

hash(...)

/ g ! \ hash(...)

key value key value hash ()

‘cat’ | 42 ‘pig’ | 18

key value key value key value

haSh () > “pig" 1 8 5 “dOg" 7 | 5 “cat” 42

Associative containers Unordered associative containers (since c++11)

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity). Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1

collection of unique keys, sorted by keys average;,0(m)worst-caseicomplexity).

set ; ;
(class template) collection of unique keys, hashed by keys
= E . unordered_set (C++11) (class template)
collection of key-value pairs, sorted by keys, keys are unique h ’ :
map (class template) unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
= = (class template)
. collection of keys, sorted by keys
multiset i g i
(class template) unordered_multiset (C++11) c?llectlon] of keys, hashed by keys
. collection of key-value pairs, sorted by keys (tlassitemplate) :
multimap (class template) unordered_multimap (C++11) collection of keyzvalue pairs, hashed by keys

(class tembplate)

e Observe on the right in the std: :unordered_map -- we do not want too

many nodes to ‘hash’ the key to the same ‘bucket’

o If this happens, we no longer get average O(1) performance on unordered containers
o For custom data types, this will be something we have to think about.

key value

“doq” hash(...)
/ e \ h:zh(...)

key value key value hash ()

cat’ | 42 ‘pig” | 18

key value key value key value

haSh () > “pig" 1 8 5 “dOg” 7 | 5 “cat” 42

Associative containers Unordered associative containers (since c++11)

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity). Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1

collection of unique keys, sorted by keys average;,0(m)worst-caseicomplexity).

set ; ;
(class template) collection of unique keys, hashed by keys
unordered_set (C++11)
collection of key-value pairs, sorted by keys, keys are unique - {cass template) i i
map (class template) unordered_map (C++11) collection of key-value pairs, hashed by keys, keys are unique
5 = (class template)
. collection of keys, sorted by keys
multiset i g i
(class template) unordered multiset (C++11) collection of keys, hashed by keys
. collection of key-value pairs, sorted by keys - {classitermplate) .
multimap (class template) unordered_multimap (C++11) collection o key:valueipairs,shashied by keys

(class tembplate)

Associative containers
Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).

set
map
multiset

multimap

e As afinal note -- std: :multiset,

std: :multimap,

std: :unordered_multiset, and std::unordered_multimap allow for
duplicate keys

key

value

udogu

/

key value

cat” 42

collection of unique keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys, keys are unique

(class template)

collection of keys, sorted by keys

(class template)

collection of key-value pairs, sorted by keys

(class template)

AN

key

value

“

pig

18

hash(...)
hash(...)

h as h (") key value key value key value
haSh () > “pig" 18 > “dOg" 7 | o] “cat” 42

Unordered associative containers (since c++11)

Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1
average, O(n) worst-case complexity).

collection of unique keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys, keys are unique
(class template)

collection of keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys

(class tembplate)

unordered_set (C++11)
unordered_map (C++11)
unordered_multiset (C++11)

unordered_multimap (C++11)

Associative containers

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys

set (class template)
_ collection of key-value pairs, sorted by keys, keys are unique
P (class template)
itrisar collection of keys, sorted by keys
(class template)
multimap collection of key-value pairs, sorted by keys

(class template)

Associative Containers

(All maintain ‘sorted’ data)

std: :set (1/2)

e All keys are unique and in sorted

order

o Implementation likely a self-balancing
tree like a red-black tree

Quick Snapshot

https://en.cppreference.com/w/cpp/container/set

std::set

Defined in header <set>

template<

class Key,

class Compare = std::less<Key>,

class Allocator = std::allocator<Key>
> class set;

Capacity
— checks whether the container is empty
Rty (public member function)
. returns the number of elements
size
(public member function)
P returns the maximum possible number of elements
max_size
- (public member function)
Modifiers
alear clears the contents :
(public member function)
: inserts elements or nodes (since C++17)
insert

(public member function)

inserts a range of elements

(public member function)

constructs element in-place

(public member function)

constructs elements in-place using a hint
(public member function)

erases elements

(public member function)

swaps the contents

(public member function)

extracts nodes from the container
(public member function)

splices nodes from another container
(public member function)

insert_range (c++23)
emplace (C++11)
emplace_hint (c++11)
erase

swap

extract (c++17)

merge (C++17)

Lookup
t returns the number of elements matching specific key
coun (public member function)
find finds element with specific key

(public member function)

checks if the container contains element with specific key

(public member function)

returns range of elements matching a specific key

(public member function)

returns an iterator to the first element not /ess than the given key
(public member function)

returns an iterator to the first element greater than the given key
(public member function)

contains (c++20)
equal_range
lower_bound

upper_bound

https://en.cppreference.com/w/cpp/container/set

std: :set (2/2)

Behavior/Performance characteristics

Allocation:

O

Dynamic, can expand -- one unique key
however

Access:

O

O(log,(n))

Search:

O

O(log,(n))

Notes:

O

sorted container

main(argc,

std::set<std:

mySet.insert(
mySet.insert(
mySet.insert(
mySet.insert(
mySet.insert(

std::cout <<

*argv[]){

:string > mySet;

<< mySet.sizeff] << std::endl;

91

std::Map

S t d ma p 1 /2) tz;f;)nle;jtir;:eader <map>

class Key,

class T,

class Compare = std::less<Key>,

class Allocator = std::allocator<std::pair<const Key, T>>

e An associative data structure S Ela5s ‘weu

(public membe
access or lnsert spe(lﬂed element
(public member functio

H Iterators
p a I r begin returns an terator to the beginning

consisting of a “key” and “value”

operator[]

cbegin (C++11) (public member function
end returns an terator to the end
11 ” H cend (C++11) (public member function)
O € Key Is what we are sorting on rbegin returs a reverse terator o the beginning
crbegin (C++11) (public member function
rend returns a reverse iterator to the end
crend (C++11 (public member function)
Capacity
pemmm— checks whether the container is empty
(public member function)
size returns fhe num?er of elements
(public member function)
max size returns fhe mAaxlrnum possible number of elements
Z (public member function)
Modifiers
E aar clears the contents
public member function)
it Inserts elements or nodes (snce C++17)

(public
nserts a range of elements
public member fu

Inserts an element or assigns to the current element If the key aiready exists

L i § 7
insert_or_assign(C++17) (oot S oy
— constructs element in-place
SplLace(orRY (public member function)

constructs elements in-place using a hint
(public member function)

inserts in- place if the key does not exist, does nothing If the key exists
(public member function)

erases elements

(public member function)

swaps the contents

public member function)

extracts nodes from the container

(public member function)

splices nodes from another container
(public member function

insert_range (C++23

emplace_hint (C++11)
try_emplace (C++17)
erase

swap

extract (C++

merge (C++17)

Lookup
" returns the number of elements matching specific key
comn (public member function)
— finds element with spacific key

(public member functi

https://en.cppreference.com/w/cpp/container/set

returns range of elements matching a specific key 92
squal.range public member function)

https://en.cppreference.com/w/cpp/container/set

std: :map (2/2)

Behavior/Performance characteristics

e Allocation:
o Dynamic, can expand -- one unique key

however main (argc, *argv[]){
e Access:
o O(|ogz(n)) std::map<std::string, std::string > dictionary;
e Search: std::pair<std::string,std::string> cat(
© O(Iogz(n)) dictionary.insert(cat);
e Notes:

std::cout << dictionary[] << std::endl;

o sorted container by the ‘key’
o Consists of a key/value pair (std::pair)

93

std: :unordered_set

e All keys are unique and unordered

o Stored in a hash table
o Available since C++ 11

Quick Snapshot

https://en.cppreference.com/w/cpp/container/unordered set

std:unordered_set

Defined in header <unordered set>

template<

class Key,

class Hash = std::hash<Key>,

class KeyEqual = std::equal_to<Key>,

class Allocator = std::allocator<Key>
> class unordered_set;

Capacity
empty (C++11)
size(C++11)
max_size(C++11)
Modifiers
clear (C++11)
insert (C++11)
insert_range (C++23)
emplace (C++11)

emplace_hint (C

erase (C++1

swap (C++11)

extract (C++17)

merge (C++17)
Lookup

count (C++11)

find (C++11)

contains (C++20)

equal_range (C++11)
Bucket interface

begin(size type)

g " (cre1n)
cbegin(size type)
end(s:i
cend size type)

(C++11)

bucket_count (C

max_bucket_count (C++11)
bucket_size (C++11)
bucket (C++11)

Hash policy

load_factor (C++11)

checks whether the container is empty

(public member function)

returns the number of elements

(public member function)

returns the maximum possible number of elements
(public member function)

clears the contents

(public member function)

inserts elements or nodes (since C++17)
(public member function)

inserts a range of elements

(public member function)

constructs element in-place

(public member function)

constructs elements in-place using a hint
(public member function)

erases elements

(public member function)

swaps the contents

(public member function)

extracts nodes from the container
(public member function)

splices nodes from another container
(public member function)

returns the number of elements matching specific key
(public member function)

finds element with specific key

(public member function)

checks if the container contains element with specific key
(public member function)

returns range of elements matching a specific key

(public member function)

returns an iterator to the beginning of the specified bucket
(public member function)

returns an iterator to the end of the specified bucket
(public member function)

returns the number of buckets

(public member function)

returns the maximum number of buckets

(public member function)

returns the number of elements in specific bucket
(public member function)

returns the bucket for specific key

(public member function)

returns average number of elements per bucket
(public member function)

94

https://en.cppreference.com/w/cpp/container/unordered_set

int gen(){

std: :unordered_set (2/2) }

++1;

main(){

Behavior/Performance characteristics SEa o e L e AnE o

std: :unordered_set<int> s2;

std::generate_n(std::inserter(s2,s2.begin()),

e Allocation:

s.merge(s2);

o Dynamic, can expand -- one unique key . (s.erase(11)==1){
: std::cout <<
however }
o ACCGSS (!'s.contains(12)){
s.insert(12);
o O(1) on average }
. std: :cout << s.bucket_count() << std::endl;
® SearCh std::cout << s.load_factor() << std::endl;
© 0(1) on average printUnorderedSet(s);
e Notes: 5
// Printing out bucket sizes
o PJ()t ES()rtEBCj for(int i=0; i< s.bucket_count(); i++){
L std::cout << s.bucket_size(i) << std::endl;
o Frequent resizing or a bad hash >

function harms performance

std:

:unordered_map (1/2)

e All keys are unique and unordered
Stored in a hash table

An associative data structure consisting
of a “key” and “value” pair

The “key” is what we are sorting on

O

O

Quick Snapshot

https://en.cppreference.com/w/cpp/container/set

std:unordered_map

Defined in header <unordered map>

template<

class Key,
class T

class Hash = std::hash<Key>,

class KeyEqual = std::equal_to<Key>,

class Allocator = std::allocator<std::pair<const Key, T>>
> class unordered_map;

2

Capacity
empty (C++11)
size(C++11)
max_size (C++11)
Modifiers
clear (C++11)
insert (C++11)

insert_range (C++23)

insert_or_assign(C++17)

emplace (C++11)

emplace_hint (C++11)

try_emplace (C++17)

erase (C++11)

swap (C++11)

extract (C++17)

merge (C++17)
Lookup

at(C++11)

operator([] (C++11)

count (C++11)

find (C++11)

contains (C++20)

equal_range (C++11)

checks whether the container is empty

(public member function)

returns the number of elements

(public member function)

returns the maximum possible number of elements
(public member function)

clears the contents

(public member function)

inserts elements or nodes (since C++17)
(public member function)

inserts a range of elements

(public member function)

inserts an element or assigns to the current element if the key already exists
(public member function)

constructs element in-place

(public member function)

constructs elements in-place using a hint
(public member function)

inserts in-place if the key does not exist, does nothing if the key exists
(public member function)

erases elements

(public member function)

swaps the contents

(public member function)

extracts nodes from the container

(public member function)

splices nodes from another container
(public member function)

access specified element with bounds checking

(public member function)

access or insert specified element

(public member function)

returns the number of elements matching specific key
(public member function)

finds element with specific key

(public member function)

checks if the container contains element with specific key
(public member function)

returns range of elements matching a specific key

Louiblic member finctinn)

96

https://en.cppreference.com/w/cpp/container/set

std: :unordered_map (2/2)

Behavior/Performance characteristics

e Allocation:
o Dynamic, can expand -- one unique key

however main(int argc, * argv[1){
e Access:
(@) 0(1) on average std::unordered map<std::string, std::string > dictionary;
® SearCh) std::pair<std::string,std::string> cat(
o O(1) on average
. dictionary.insert(cat);
e Notes:

o Not Sorted std::cout << dictionary|] << std::endl;
o Frequent resizing or a bad hash '
function harms performance

97

Common ‘Gotcha’s’ with associative containers

e Important to note that ‘at’ is a read operation
e operator|[] will create the key if it does not exist, otherwise update the key
o It may be worth updating the operations

e Generally, unordered variants are drop in replacements
o i.e.trytoreplace a std::map with std::unordered_map in your code if you do not need sorting

Associative containers Unordered associative containers (since c++11)

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity). Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1

collection of unique keys, sorted by keys average;,0(m)worst-caseicomplexity).

set (class template) unordered set (C++11) collection of unique keys, hashed by keys
collection of key-value pairs, sorted by keys, keys are unique - {cass template)) :

map = collection of key-value pairs, hashed by keys, keys are unique
(class template) unordered_map (C++11) gl

. collection of keys, sorted by keys -

multiset 00 oiate) unordered multiset (cs+11) collection of keys, hashed by keys
collection of key-value pairs, sorted by keys — {classitermplate)

multimap (class template) unordered_multimap (C++11) collectioniof:keyvalueipairsyhashed by;keys

(class tembplate)

Wrapping Up

Summary

e \We have had a tour of the containers in the C++ Standard Library
o My goal is that you now understand there are a variety of data structures available for you to
get started and tackle your programming challenges!
o Choosing the right container can often make a large impact on performance and ease of
solving a problem.

100

Thank you Meeting C++ 2023!

Introduction to C++ Containers

-- Know Your Data Structures
with Mike Shah

Social: @MichaelShah
Web: mshah.io
17:15-16:15 Fri, November12, 2023 Courses: courses.mshah.io

3 YouTube

~60 minutes | Introductory Audience www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

